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Abstract 

A double-layer interpolation method (DLIM) is proposed to improve the performance of the 

boundary element method (BEM). In the DLIM, the nodes of an element are sorted into two 

groups: (i) nodes inside the element, called source nodes, and (ii) nodes on the vertices and 

edges of the element, called virtual nodes. With only source nodes, the element becomes a 

conventional discontinuous element. Taking into account both source and virtual nodes, the 

element becomes a standard continuous element. The physical variables are interpolated by 

continuous elements (first-layer interpolation), while the boundary integral equations are 

collocated at the source nodes only. We further established additional constraint equations 

between source and virtual nodes using a moving least-squares (MLS) approximation 

(second-layer interpolation). Using these constraints, a square coefficient matrix of the 

overall system of linear equations was finally achieved. The DLIM keeps the main 

advantages of MLS, such as significantly alleviating the meshing task, while providing much 

better accuracy than the traditional BEM. The method has been used successfully for solving 

potential problems in two dimensions. Several numerical examples in comparison with other 

methods have demonstrated the accuracy and efficiency of our method. 
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1. Introduction 

The boundary integral equation method (BIEM) has been studied widely with regard to 

problems in potential theory [1-6]. The method is classified as a boundary-type method, 

which can reduce the dimensions of the original problem by one. With advances in computer 

technology, the boundary element method (BEM) has become a well-established method to 

deal with practical engineering problems [7-9] involving, for example, heat conduction [10, 

11], acoustics [12, 13], linear elasticity [14], and crack formation [15]. Compared with the 

finite element method (FEM), the BEM offers several advantages, including higher accuracy 

and only discretizing the boundary rather than the entire domain. In contrast with FEM, in 

which the trial functions must have at least C0 continuity, the BEM has no continuity 

requirement for the field variables at the interfaces between elements. Thus, both continuous 

and discontinuous elements can be used with BEM [16, 17]. 

A discontinuous element, with all source nodes inside the element, provides many 

advantages, with regard to simplifying mesh generation, the assembly and solution of system 

equations, and the evaluation of hypersingular integrals [18]. However, using discontinuous 

elements, the C0 continuity for the potential on the whole boundary and for the boundary 

normal flux on the smooth parts of the boundary is not guaranteed. Moreover, for the same 

level of accuracy, many more nodes are required. This means more computer resources and 

CPU time, because the size of the final system of the coefficient matrix increases significantly. 

Continuous elements can guarantee C0 continuity, but not 1,C   continuity, which is 

necessary for the hypersingular integral equation [19]. In particular, continuous elements are 

inconvenient and inaccurate when used to interpolate discontinuous fields, such as normal 

fluxes at corners [20] and edges of a body. 

To escape this dilemma and to unify the approximation of both continuous and 

discontinuous fields, a double-layer interpolation method (DLIM) is described here. The 

method is achieved by combining conventional polynomial element interpolation and moving 



least-squares (MLS) approximation. 

In the DLIM, an element is constructed by adding virtual nodes to a conventional 

discontinuous element at the vertices and edges of a geometric element. This element is 

equivalent to a standard continuous element. For example, two virtual nodes together with 

one source node in the conventional constant element comprise an entire continuous 

quadratic element for two-dimensional (2D) problems. When using these continuous 

elements to interpolate the boundary field variables (first-layer interpolation), the 

interpolation accuracy will increase by two orders compared with the corresponding 

discontinuous element. Furthermore, by manipulating the influence domains of some virtual 

nodes in the MLS (second-layer interpolation), both continuous and discontinuous fields can 

be readily and accurately approximated. Because the BIEs are not collocated at the virtual 

nodes, the evaluation of hypersingular integrals and the treatment of geometrical and physical 

corners can be simplified. Thus, the DLIM is able to unify the continuous and discontinuous 

element interpolation methods. Based on the features, it can be readily extended to solve 

problems involving discontinuity, such as crack propagation and contact problems [21, 22]. 

For a three-dimensional (3D) problem, even if we use the discontinuous grids, both 

continuous and discontinuous fields can still be accurately approximated by using the DLIM. 

Due to the fact that it is easier to obtain a discontinuous grid than a continuous grid (see Fig. 

1), we can expect that our method will substantially simplify the mesh generation. This is a 

major advantage of the DLIM for solving problems in three-dimensions. 

 

 

Fig.1. The discontinuous surface girds of the flange plate. 

 

In this paper, we present a general formulation of the double-layer interpolation boundary 

element method (DLI-BEM). The boundary integral equations (BIEs) in this method are 



collocated at the source nodes only. This scheme leads to the number of interpolation nodes 

being more than the number of linear algebraic equations obtained by the discretized BIE. 

Thus, we must provide additional constraint equations to make the final system of equations 

solvable. These equations are obtained using the MLS approximation to construct 

relationships between source and virtual nodes. With these relationships, a square matrix for 

the final overall system of linear algebraic equations can be achieved. Obviously, the 

DLI-BEM requires much more CPU seconds for computing and assembling these coefficient 

matrices than the traditional BEM. For the same level of accuracy, however, the DLI-BEM 

still gains efficiency. 

In the DLI-BEM, the MLS is used only for assembling the coefficient matrices and there is 

no need to calculate the derivatives of the MLS shape functions. In the boundary integration 

process, variables at Gaussian points are evaluated by the polynomial shape functions of the 

DLIM elements, rather than the MLS approximation. Moreover, in the MLS computation, the 

source nodes covered in each influence domain of virtual nodes can be obtained directly by 

searching the neighboring cells instead of searching all source nodes. Thus, the computational 

efficiency of the MLS in the DLI-BEM is much higher than that of MLS constructed by 

scattered nodes in a pure mesh-free method.  

The MLS, proposed by Lancaster and Salkauskas [23], was first introduced into 

computational mechanics by Belytschko [24] for a mesh-less method. However, the original 

MLS did not have a delta function property, which leads to difficulties in imposing boundary 

conditions. To restore the delta function property, Lancaster and Salkauskas [23] developed 

an interpolating moving least-square (IMLS) method, in which only some specific singular 

weight functions are used. Later, Wang et al. proposed an improved interpolating moving 

least-square (IIMLS) method [25], which not only satisfies the property of a delta function 

but can be used with any kind of weight function. Li [26] theoretically proved the delta 

function property of the IIMLS shape function. In this paper, we will adopt the IIMLS for the 

second-layer interpolation. 

This paper is organized as follows. In Section 2, the double-layer interpolation method is 

described in detail. Section 3 describes the formulation of the double-layer interpolation 



boundary element method (DLI-BEM) for potential problems. Numerical examples for an 

interpolation test and several 2-D potential problems are presented in Section 4. The paper 

ends with our conclusions in Section 5.  

 

2. The double-layer interpolation method 

In this paper, we begin by considering problems in two dimensions. For a 2D domain, the 

boundary elements are in one dimension. In this section, we describe the double-layer 

interpolation method (DLIM) for problems in two dimensions. 

 

2.1 The elements of DLIM 

 

Fig. 2. Elements of the double-layer interpolation method (DLIM) for two-dimensional (2D) problems: (a) 

constant, (b) linear, and (c) quadratic. 

 

The elements of DLIM include continuous and discontinuous elements. Figure 2 shows 

three kinds of DLIM elements with different orders. The two end nodes shown by void 

circles are referred to as virtual nodes, and the internal nodes shown by solid discs are source 

nodes. Ignoring the virtual nodes, the elements are conventional discontinuous elements. The 

virtual nodes and the source nodes together comprise an entire element; this element is 

equivalent to a conventional continuous element. For example, the DLIM element shown in 

Fig. 1(a) is constructed by one source node and two virtual nodes. The shape functions of the 

new elements (a), (b), and (c) are given by Eqs. (1)–(3), respectively. 
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where [ 1,1]    is the natural coordinate defined on the element, and (0,1)d   

representing the offset of source nodes. In this paper, the value of d is taken to be 0.25. From 

Eqs. (1)–(3), the interpolation accuracy of DLIM elements increases by two orders compared 

with the corresponding discontinuous element. 

We will use the DLIM element to interpolate boundary variables (this is referred as first- 

layer interpolation), but we will collocate the BIE only at the source nodes (which is why we 

call them source nodes). In this way, the number of linear algebraic equations obtained by 

discretizing the BIE will be less than the number of interpolation nodes. Thus, we must 

provide additional constraint equations to make the final system of equations solvable. These 

equations will be obtained by the second-layer interpolation using the moving least-squares 

(MLS) approximation to construct relationships between variables on source nodes and 

virtual nodes. We will use these constraints to condense the degrees for all virtual nodes. The 

second-layer interpolation will be described in the next subsection. 

 

 



2.2 The moving least-squares method 

The MLS approximation is considered the second-layer interpolation here. In the proposed 

method, the MLS approximation is used just for constructing the relationship between the 

source nodes and the virtual nodes, rather than evaluating the shape functions at each 

Gaussian point in the numerical integration. There is no need to evaluate the derivatives of 

the MLS shape functions. The MLS approximation is performed independently on piecewise 

smooth segments i  (i = 1, 2, …, n), which naturally consist of the boundary. 

The discussion below addresses a field function f(t) on a one-dimensional (1-D) boundary 

of a 2-D body. The function values at virtual nodes approximated by the MLS [23, 24] are 

defined as 
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where vt  is a curvilinear co-ordinates of a virtual node on i , respectively. M denotes the 

total number of source nodes of which the influence domain covers the virtual node vt  and 

ˆ s
jf  are the fictitious source nodal values, and ( )v

j t  represents the shape function of the 

MLS corresponding to source node s
jt , which is given by 
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with matrices A( v
It ) and B( v

It ), defined by 
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where ( , )v s
j jw t t  (j = 1, 2, …, M) is the weight function at the source node s

jt , and 

( )v
kp t are monomial basis functions of virtual node vt , and T ( )s

jtp  (j = 1, 2, …, M) is a 

basis function vector of source node s
jt . In the numerical implementation presented later in 

this paper, a cubic basis is used: 
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where t  can either be the virtual node vt  or the source node s
jt . 

Because the shape functions in Eq. (5) lack of the property of a delta function, an IIMLS 

[25] was proposed. With a set of new basis functions ( , )v
kp t t , the IIMLS interpolants for f( vt ) 

are defined as 
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where s
jf  are the function values of source nodes. The shape function ( )v

j t  of the 

IIMLS is given by 
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with matrices C( vt ) and D( vt ) defined by 
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Equations (5) and (8) are shape functions of the MLS and IIMLS approximations, 

respectively, corresponding to source node s
jt . The MLS and IIMLS approximations are well 

defined when matrices A( vt ) in Eq. (5) and C( vt ) in Eq. (8) are invertible. 

For implementing the MLS and IIMLS, the weight functions should be chosen first. As 

pointed out in Ref. [24], a Gaussian-type weight function yields excellent results. Thus, in our 

work, we used the following weight functions: 
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where v s
j jd t t   is the distance between a virtual node vt  and a source node s

jt  

measured along i , jc  is a constant controlling the shape of the weight function, and ˆ
jd  is 

the size of the support for the weight function jw  and determines the support of the source 

node s
jt . To guarantee the regularity of matrices A( vt ) and C( vt ), the choice of ˆ

jd  should 

be sufficiently large to have at least m and m−1 source nodes, respectively, of which the 

influence domain covers the virtual node vt . 

 

2.3 Approximation of continuous and discontinuous fields 

Figure 3 shows a rectangular domain discretized by 9 DLIM elements with 21 source nodes 

and 14 virtual nodes. These elements are used to interpolate potentials and normal fluxes on 

the boundary. At sharp corners and points at which the boundary condition is discontinuous, 

we put two virtual nodes (nodes 23 and 24, for example), one for each element. At a point 

where two adjacent elements are smoothly connected, we put only one virtual node (node 27, 

for example), letting the two elements share a same virtual node, thus naturally leading to 

continuity at the point. Alternatively, we can also put two virtual nodes at the point, making 



all elements independent of each other. In this case, for continuous fields, a continuity 

constraint is added. 

 

 

Fig. 3. Boundary discretized by the DLIM elements. 

 

The visibility criterion [24] will be adopted here to approximate the continuous and 

discontinuous fields. The difference between the proposed method and the original MLS is 

that in the proposed method, the source nodes covered in the influence domain of a virtual 

node are obtained by searching the neighboring cells of the virtual node instead of searching 

all source nodes. This feature makes our method much more efficient than the original MLS. 

With the visibility criterion, the influence domains of some specific nodes may be different 

for approximating the continuous and discontinuous fields. When approximating the 

discontinuous fields, the virtual nodes and the source nodes beyond a sharp corner or a 

discontinuous point are considered as opaque in the weight functions of MLS. For 

approximating the continuous fields, on the other hand, all nodes in the neighborhood of an 

evaluating point are taken as transparent. In the construction of an influence domain of a 

virtual node, a projecting line (in curve parametric space) from a virtual node to a cell is 

imagined to be a path of light. If the path encounters an opaque node, it is terminated and the 

source nodes of the cell are excluded in the influence domain of this virtual node. An 



example is given in Fig. 4. 

 

Fig. 4. Influence domains of virtual node 23: (a) for interpolating the potential and (b) for interpolating the 

normal flux. 

 

In Fig. 4(a), for interpolating the potential (a continuous field), the source nodes in the 

influence domain of virtual node 23 are obtained by searching the left and right connecting 

cells. In case the normal flux is not continuous at node 23, another node 24 is added at the 

same location. Then, node 24 is an opaque node, and the source nodes covered in the 

influence domain of node 23 are nodes 1, 2, and 3 (see Fig. 4(b)).  

For virtual nodes on smooth parts of the boundary (e.g. node 30 in Fig. 3), the potential v
iu  

and the normal flux v
iq  are approximated with Eqs. (11) and (12): 
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where v
it  is a curvilinear co-ordinates of ith virtual node, and ( )v

j t  is the shape function 

at source node s
jt  (e.g., Eq. (10)), iM  denotes the total number of source nodes, s

ju  and 

s
jq  are the nodal values for the potential and normal flux at the source node s

jt , which is 

covered in the influence domain of virtual node v
it . 

For virtual nodes at sharp corners (e.g., nodes 24 and 25 in Fig. 3), v
iq is still approximated 

by Eq. (15). v
iu  is approximated by 
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where L is a number of adjacent edge of ith virtual node v
it  on element, ( )

v
i lt  is the 

curvilinear coordinate of virtual node v
it  on the lth adjacent edge, lM  is the total number of 

source nodes covered in the influence domain of ( )
v
i lt , ( )

s
j kt  is the curvilinear coordinate at 

the jth source node covered in the influence domain of ( )
v
i kt , and ( ) ( )

v s
i k j kt t  denotes the arc 

length between ( )
v
i kt  and ( )

s
i kt  along each edge k . 

In the DLIM, the potential u and the normal flux q at any boundary point P are 

approximated by the first-layer interpolation: 

2

1 3

( ) ( ) ( ) ( )
K

v s
i i i i

i i

u P u N u N u  
 

    ,                              (14) 

2

1 3

( ) ( ) ( ) ( )
K

v s
i i i i

i i

q P q N q N q  
 

    ,                              (15) 

where [ 1,1]    is the natural coordinate of the point P defined on the element, and ( )iN   

represents the shape function of the ith interpolation node in each element (e.g., Eqs. (1)–(3)), 

K is equal to 3 (4 or 5) according to the order of the DLIM element (see Fig. 1), and s
iu  and 

s
iq  represent nodal values of potential and normal flux at ith source nodes in element, 

respectively. v
iu  and v

iq  are nodal values of potential and normal flux at ith virtual node on 

element, which are determined by the second-layer interpolation (e.g., Eqs. (11)-(13)). 

Substituting Eq. (12) into Eq. (15) yields the DLIM formulation for the normal flux,  
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For DLIM elements without sharp corners and discontinuous boundary conditions (e.g., 



element 6 in Fig. 3), substituting Eq. (11) into Eq. (14) yields the DLIM formulation for the 

potential 
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For DLIM elements with a sharp corners or discontinuous boundary condition (e.g., 

elements 1 and 2 in Fig. 3), substituting Eq. (13) into Eq. (14) yields the DLIM formulation 

for the potential 
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where Li is a number of adjacent edge of ith virtual node v
it  on element. 

From the Eqs. (11)-(18), It is seen that, by manipulating the influence domains of some 

virtual nodes in the second-layer interpolation (see Fig. 4), the DLIM is able to accurately 

approximate both continuous and discontinuous fields, as well as readily guarantee the C0 

continuity for continuous fields. This is done by putting two virtual nodes at a sharp corner or 

a point where the boundary condition is discontinuous (see Fig. 3). As the BIEs are not 

collocated at virtual nodes, the proposed method retains the advantages of discontinuous 

element, such as simplifying the evaluation of hypersingular integrals and the treatment of 

geometric corners and discontinuous boundary conditions. Therefore, the DLIM unifies the 

continuous and discontinuous element interpolation methods, and is a general method for 

solving the problems involving discontinuity. 

 

2.4 Algorithm of DLIM 

The procedure of the DLIM is as follows: 

1. Find an element E which includes a given boundary point P. 

2. Calculate physical variables at virtual nodes of the element E by the second-layer 

interpolation (e.g., Eqs. (11)-(13)). 

3. Calculate physical variables at point P by the first-layer interpolation (e.g., Eqs. (14) 

and (15)). 

From the procedure, the accuracy of the DLIM is affected by both the first-layer and the 



second-layer interpolations. By adding two virtual nodes to a conventional discontinuous 

element at the vertices, the original discontinuous element becomes a high-order continuous 

element (see Fig. 2) so that the interpolation accuracy of the DLIM elements is improved 

(first -layer interpolation). Furthermore, the physical variables at all virtual nodes can be 

accurately approximated by the MLS or IIMLS approximations (second-layer interpolation). 

Thus, the DLIM combines the advantages of the stability of element interpolation and the 

high accuracy of the MLS or IIMLS, while overcoming their disadvantages. This will be 

verified by numerical examples in Section 4. 

 

3. The double-layer interpolation boundary element method 

3.1 Boundary integral equation 

The well-known boundary integral equation (BIE) for the potential problem with a 2D finite 

region   bounded by a boundary   is 

( , )
( ) ( ) ( , ) ( ) ( ) ( ) ( ),        ,

( )

G P Q
c P u P G P Q q Q d Q u Q d Q P Q

n Q 


    

        (19) 

where u and q are the potential and normal flux of the field function on the boundary  , 

respectively, n is a unit-normal pointing outward of   at the field point Q, the coefficient 

c(P) =1, 1/2 or 0 when the source point P is in the interior region , on smooth boundary   

or in the exterior region, and G(P,Q) is Green’s function in 2D space given by 

1
( , ) ln

2
G P Q r


  ,                                                 (20) 

where r P Q  . 

 

3.2 Discretization of the BIE using the DLIM elements 

The boundary   of the 2D domain   will be discretized by the DLIM elements (Fig. 2). 

The total numbers of elements, source nodes, and field nodes are E, N, and M, respectively. 

Thus, the discretization form of Eq. (20) can be written as 

1 1 1 1

,          1,2,  ... , .

j jE M E M

ij j ij j
j j

h u g q i N   

    

                                (21) 



with 

( , ) 1
( ) ( )

( ) 2j

i
ij j ij

G P Q
h N Q d Q

n Q
  




  

 ,                                      

( , ) ( ) ( )
j

ij i jg G P Q N Q d Q 


  ,                                             

where ju  and jq  are the potential and the normal flux of the  th interpolation node of 

the jth element, respectively, jM  denotes the total number of interpolation nodes of the jth 

element, and ( )jN Q  represents the shape function of the first-layer interpolation (e.g., Eqs. 

(1)–(3)) for the  th interpolation node of the jth element. 

The matrix form of Equation (21) is 

Hu Gq ,                                                        (22) 

where H and G are N×M coefficient matrices, and u and q are vectors of M components 

containing potentials and normal fluxes of all interpolation nodes, respectively. 

In the DLI-BEM, the BIEs are collocated at the source nodes only. This will lead to the 

number of linear algebraic equations being less than the number of interpolation nodes. To 

make the final system of equations solvable, additional constraint equations should be applied. 

These constraints will be used to condense the degrees for all virtual nodes, which are 

explained in the next subsection. 

 

3.3 Matrix assembly and solution 

Distinguishing the source and virtual nodes, Eq. (22) can be rewritten as 
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with 
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where su , sq  and su , sq  are vectors containing known and unknown boundary variables 

of source nodes, respectively. vu , vq  and 1
vu , 2

vu , vq  represent vectors containing the 

known and unknown boundary variables of virtual nodes, respectively. sH , sH , vH , 1
vH , 

and 2
vH  and sG , sG , vG , and vG  are submatrices of H and G, respectively. The 

difference between 1
vu  and 2

vu  is that 1
vu  represents a vector containing unknown 

potentials for virtual nodes at the corner, of which the adjacent edge is the Dirichlet boundary 

condition (e.g., node 22 in Fig. 3). 

The boundary variables at virtual nodes in 1
vu , 2

vu , and vq  are not truly independent 

variables. To condense the degrees for these virtual nodes, additional constraint equations are 

provided. The potential in 1
vu  is directly equal to the nodal value at the same geometric 

location on the adjacent edge (e.g., 22 35u u  in Fig. 3). In this case, 1
vu  can be regarded as 

a vector in which all potentials are known. 

When the virtual node is on the smooth part of the boundary (e.g., node 23 in Fig. 3), the 

potentials in 2
vu  are approximated by Eq. (11). The virtual node is located at the sharper 

corner, whose adjacent edge is the Neumann boundary condition (e.g., node 25 in Fig. 3), the 

potential in 2
vu  is calculated by Eq. (13). Then, 2

vu  can be expressed as 

2 =v s
uu Φ u ,                                                         (24) 

where uΦ  is the shape function matrix of the second layer interpolation for su . 



Using Eq. (12) for all normal fluxes in vq , then vq  is given by 

=v s
qq Φ q ,                                                         (25) 

where qΦ  represents the shape function matrix of the second-layer interpolation for sq . 

Here, uΦ  and qΦ  are sparse matrices because the second-layer interpolation is a local 

approximation method. 

Substituting Eqs. (24) and (25) into Eq. (23) and applying boundary conditions at each 

virtual node, the degrees for all virtual nodes in Eq. (23) are condensed  
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,    (26) 

By applying boundary conditions at all source nodes and switching the columns in the 

matrices, the final system of linear equations can be obtained 

Ax b ,                                                          (27) 

with 
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,                                    

where A is a matrix of order N, x is a vector containing N boundary unknowns at source 

nodes only, and b is a known right-hand-side vector. 

By means of the proposed method, the size of the overall system of linear equations is the 

same as that in the conventional discontinuous element implementation. The variables at 

virtual nodes do not occur in Eq. (27). This is a major advantage of our method. Solving Eq. 

(27) and combining Eqs. (24) and (25), we can obtain unknown nodal values for all 

interpolation nodes. 



3.4 Algorithm of DLI-BEM 

The algorithm of the DLI-BEM is as follows: 

1. Discretize the boundary using DLIM elements. 

2. Calculate the coefficient matrices H and G in Eq. (22).  

3. Condense the degrees for all virtual nodes in Eq. (23) by using the boundary 

conditions and the additional constraint equations 2 =v s
uu Φ u  and =v s

qq Φ q . 

4. Impose the boundary conditions and solve the equation Ax=b by using LU 

decomposition so that potentials and normal fluxes at any source nodes are obtained. 

5. Calculate the potentials and normal fluxes at virtual nodes by using the equations 

2 =v s
uu Φ u  and =v s

qq Φ q . 

The potentials and normal fluxes at any boundary point are approximated by using the 

first-layer interpolation (e.g., Eqs. (11) and (12)). 

 

4. Numerical examples 

In this section, five numerical examples are presented. The first is used to test the 

interpolation accuracy of the DLIM. The other examples are given to demonstrate the 

accuracy and efficiency of the DLI-BEM for solving the Laplace equation, 

2 0u                                                    (28) 

where 2  is the Laplace operator. For purposes of error estimation and convergence study, a 

‘global’ L2 norm error, normalized by |u|max, is defined as 

( ) ( )

1max

1 1
( )

M
e n

i i
i

e u u
u M 

  ,                                         (29) 

where |u|max is the maximum value over M sample nodes; the superscripts (e) and (n) refer to 

the exact and numerical solutions, respectively. 

In all computations, unless indicated otherwise, the parameter d in Eqs. (2) and (3) is taken 

to be 0.25, and the support size of the weight function ˆ
jd  in Eq. (10) is equal to 4.0h, 3.0h, 

and 1.5h for DLIM constant, linear, and quadratic elements, respectively. The h is the 



maximum size of elements on each boundary edge. The parameter jc  is taken to be such 

that ˆ /j jd c  is a constant and equal to 3.5. 

In the following figures, n is the total number of source nodes. DLI-BEM Const, 

DLI-BEM Linear, and DLI-BEM Quad are the numerical results of the DLI-BEM with 

constant, linear, and quadratic DLIM elements, respectively. Traditional BEM Linear, 

traditional BEM Quad, and traditional BEM Cubic represent the numerical results of the 

traditional BEM with the conventional continuous linear, quadratic, and cubic elements, 

respectively. The numerical results of the flux inside the domain are evaluated by 

2 2
x yq q q  ,                                                   (30) 

where xq  and yq  are the component of q in the x and y directions, respectively. 

 

4.1 Example 1 

 

Fig. 5. Interpolation test on a straight line and a quadrant. 

The first example is an interpolation test for a piecewise function, the model of which 

consists of a straight line (from (−2, 0) to (0, 2)) and a quadrant of radius 2 units centered at 

the origin (Fig. 5). The piecewise function f(x, y) with a jump discontinuity at point (0, 2) is 

given by 

4 4 3 3 2 2

3 3 2 2 2

exp( 1),                      [ 2,0)
( , )

  exp( 2)sin( ) ,     [0, 2]

x y x y x y xy x
f x y

x y x y xy x y x

      
 

       
.           (31) 

To compare the interpolation accuracy between the DLIM and conventional discontinuous 

elements interpolation, the model is meshed by these two types of elements. The relative 

errors on each curve, with 12, 24, 48, 96, and 204 source nodes, are shown in Fig. 6. 

Numerical results on the quadrant with 36 source nodes, together with the exact solution, are 



shown in Fig. 7. In Figures 6 and 7, DLIM-Const, DLIM-Linear, DLIM-Quad, 

Discontinuous-Linear, Discontinuous-Quad, and Discontinuous-Cubic represent the results of 

DLIM and the discontinuous elements interpolation with different element orders. 

Figure 6 shows that the DLIM has higher interpolation accuracy and convergence rates. 

Additionally, as plotted in Fig. 7, the method guarantees continuity on a smooth boundary 

and accurately approximates the discontinuous boundary variables at point (0, 2). 

 

Fig. 6. Relative errors of f(x,y) on the quadrant and straight line 

 

Fig. 7. Function values of f(x,y) along the quadrant. 

 

4.2 Example 2 



              

(a)                                        (b) 

Fig. 8. Mixed problem on complicated geometry: (a) geometric model and (b) boundary conditions. 

The case of a mixed problem on a complicated geometry is considered as the second example, 

and the size of the complicated geometry is illustrated in Fig. 8 (a). The analytical solution 

for this problem is given by: 

4 4 2 2( , ) 6u x y x y x y                                                (32) 

The prescribed u and q values along all boundaries are shown in Fig. 8 (b). The Dirichlet 

boundary condition on all semicircles is imposed according to the above analytical solution. 

To study the convergence and efficiency of the proposed method, we employed five sets of 

source nodes on all straight lines, 6, 12, 18, 24 and 30. The number of source nodes on each 

semicircle is two times more than the nodes on any straight line.  

Figs. 9 and 10 show the relative errors for u on Neumann boundary conditions and q on 

Dirichlet boundary conditions, respectively. Combined with the exact solution, the numerical 

results of u and q inside the domain along a semicircle (angle from   to 0) of radius 1.8 

units, centered at the origin, are shown in Figs. 11 and 12, respectively. As illustrated in Figs. 

9–12, high accuracy and convergence rates for the mixed problem with complicated geometry 

can be achieved with the method proposed.  



  

 

 

Fig. 11. Values of u along a semicircle of radius 1.8 units centered at the origin (with angle from   to 0). 

 

Fig. 12. Values of q along a semicircle of radius 1.8 units centered at the origin (with angle from   to 0). 

4.2 Example 3 

Fig. 10. Relative errors and convergence rate of 

q along all semicircles. 

Fig. 9. Relative errors and convergence rate of u 

along all straight lines. 



 

Fig. 13. Dirichlet problem with a complex geometry. 

 

A circle of radius 1.5 units centered at the origin containing an asteroid is considered for 

the second example (Fig. 13). The analytical solution is given by 

3 3 2 2( , ) 3 3u x y x y x y xy     .                                      (32) 

The Dirichlet boundary condition is imposed on all edges. In this example, there are four 

sets of source nodes on each interior edge, 6, 12, 24, and 48. Moreover, the number of source 

nodes on the exterior circle is six times more than the nodes on any interior edge. 

The relative errors of q on all edges are plotted in Fig. 14. The numerical results of u and q 

along a semicircle (the angle from   to 0) of radius 1.48 units, centered at the origin, with 

six source nodes on each interior edge, are illustrated in Figs. 15 and 16, respectively. The 

results show that the proposed method has high rates of convergence. The agreement between 

numerical and exact results is excellent. The CPU time spent in constructing and solving the 

system equations is plotted in Fig. 17. It is clear that the proposed method requires less CPU 

time than the traditional BEM. 

The effect of the parameter d in Eqs. (2) and (3) on the computational accuracy of the 

proposed method was studied in this example. The above four sets of source nodes are also 

used here, which yield 60, 120, 240, and 480 source nodes. As shown in Fig. 18, for the same 

number of source nodes, the accuracy of the DLI-BEM with DLIM linear element will be 

improved slightly with the increment of the offset of source node d, whereas the opposite 

phenomenon is seen for the DLI-BEM with the DLIM quadratic element. It can be inferred 

that the ‘best’ parameter d should be between 0.2 and 0.25. 



To study the effect of the parameter jc  in Eq. (10) on the solution accuracy of the 

proposed method, we arranged 6 and 36 source nodes on all interior edges and the circle, 

respectively. As shown in Fig. 19, the results of the DLI-BEM with DLIM quadratic element 

are still stable with variation in ˆ /j jd c , and the results of the DLI-BEM with DLIM constant 

and linear elements are also acceptable. 

 

Fig. 14. Relative errors and convergence rates of q on all edges. 

 

Fig. 15. Values of u along a semicircle of radius 1.48 units centered at the origin (with the angle from   

to 0). 



 

Fig. 16. Values of q along a semicircle of radius 1.48 units centered at the origin (with the angle from   

to 0). 

 

Fig. 17. Comparison of computational efficiency for a Dirichlet problem. 

 

Fig. 18. Effect of d on the accuracy of the DLI-BEM for the Dirichlet problem. 



 

Fig. 19. Effect of ˆ /j jd c  on the accuracy of the DLI-BEM for approximating u. 

 

4.4 Example 4 

 

    

(a)                                    (b) 

Fig. 20. Mixed problem on a square domain with internal cavities: (a) geometric model and (b) 

boundary conditions. 

The fourth example is presented to show the accuracy and convergence of the DLI-BEM with 

comparison to the FEM. In this example, the geometric model is constituted by a 10×10 

square domain with many internal cavities (see Fig. 20 (a)), and the prescribed u along all 

boundaries are shown in Fig. 20 (b).  

In DLI-BEM the potentials and normal fluxes on the boundary are approximated by 



quadratic DLIM elements, while these physical variables are approximated by quadratic 

triangle elements in FEM. Table 1 lists the numbers of elements and source nodes for the 

proposed method and FEM. In the following figures of this example, the results of 

DLI-BEM270 and DLI-BEM462 are obtained by the proposed method using 270 and 432 source 

nodes, respectively. The results of FEM with 1,802 and 4,822 source nodes are denoted by 

FEM1802 and FEM4822, respectively. The numerical results by the FEM with 563,037 sources 

nodes are used as a reference solution.  

The numerical results of the potential along a line (x=5) are shown in Fig. 21, and the 

potential distribution in the whole domain is shown in Fig. 22. From Fig. 21, one can see that 

the numerical results of the potential by both methods approach to the reference solution as 

the number of node increases, but the convergence rate by the proposed method are higher 

than that by the FEM. As shown in Fig. 22, high level of accuracy can be obtained by the 

proposed method with few source nodes. 

Table 1 Number of elements and source nodes in example 4. 

 DLI-BEM FEM 

 1 2  1 2 3 

Elements 90 154  779 2183 278706 

Source nodes 270 462  1802 4822 563037 

 

Fig. 21. Values of potential u along a line x=5. 



   

(a)                                         (b) 

Fig. 22. Potential distribution by: (a) DLI-BEM with 462 source nodes and (b) FEM with 563037 source 

nodes. 

 

4.5 Example 5 

   

(a)                                            (b) 

Fig. 23. Steady heat conduction problem on a dam: (a) geometric model and (b) boundary conditions. 

A steady heat conduction problem on a real dam model (with the coefficient of heat 

conduction k = 1) is considered in the last example (Fig. 23). The interface is 157 m between 

the dam and the bed rock. The left and right of the dam are regarded as upstream and 

downstream, respectively. The upstream water level is 162 m and the distance is 9 m between 



it and the top of the dam. The other edges, however, are exposed to air. 

The left, right, and bottom edges of the bed rock are set as adiabatic boundaries and the 

annual average air temperature of the location is taken as 20.7°C (Fig. 23(b)). Moreover, the 

temperature of water at a depth more than 114 m is taken as 13.4°C, while the temperature of 

water within 114 m is given by 

20.7 0.0640350877T h   ,                                          (34) 

where h is the depth into the water. 

For the DLI-BEM, 6 source nodes are arranged on each edge, yielding a total number of 

60 source nodes. However, two different nodes arrangements of 6 and 18 nodes on each edge 

are used in FEM, yielding 152 and 1,295 source nodes, respectively. In the following figures 

of this example, the results of FEM152 and FEM1295 are obtained by FEM, corresponding to 

152 and 1,295 nodes, respectively. The result obtained by FEM with 137,354 source nodes is 

considered a reference solution, denoted as RefSolution. The temperature along the interface 

between dam and bed rock is shown in Fig. 24, and the temperature distribution in the 

domain is shown in Fig. 25. 

 

Fig. 24. Temperature along the interface between the dam and the bed rock. 



       

(a)                                   (b) 

Fig. 25. Temperature distribution: (a) DLI-BEM Const and (b) RefSolution. 

 

5. Conclusions and discussions 

In this paper, we have proposed a double-layer interpolation method (DLIM) by combining 

the conventional polynomial element interpolation and the MLS approximation. The new 

method inherits the advantages from both the element interpolation and the element-free 

approximation, while overcoming their disadvantages. Compared with the continuous and 

discontinuous element interpolation methods, the DLIM is able to naturally and accurately 

approximate both continuous and discontinuous fields. Thus, the DLIM has unified the 

continuous and discontinuous element interpolations. Numerical tests have demonstrated that 

it possesses a remarkable accuracy and high rates of convergence. 

The DLIM provides a new implementation for the BEM. In the DLI-BEM, the MLS is not 

used to evaluate the shape functions at each Gaussian point in the numerical integration, but 

rather only to construct the relationship between the source nodes and the virtual nodes. 

Furthermore, source nodes covered in the influence domain of a virtual node can be obtained 

directly by searching neighboring elements of the corresponding virtual node. Thus, the 

computational efficiency of the MLS in the DLI-BEM is much higher than that of MLS 

constructed by scattered nodes in a pure element-free method. In the DLI-BEM, the 

computational cost of the numerical integration and the matrix assembly is slightly increased. 

However, for the same level of accuracy, the DLI-BEM requires less computational cost. 

Moreover, it simplifies the evaluation of hypersingular integrals, and the treatment of 



geometric corners and discontinuous boundary conditions.  

Our method was confirmed through a number of numerical examples with different 

geometries and boundary condition types. Compared with the traditional BEM, the DLI-BEM 

possesses much higher accuracy, convergence rates and computational efficiency for most 

cases. It is demonstrated that the DLIM can substantially improve the performance of the 

BEM. Due to the above advantages, the new method is promising for solving problems 

involving discontinuity, such as crack propagation, contact problems, etc.  
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